1. تولید گیاهان مقاوم به بیماری از طریق مهندسی ژنتیک
    1. تولید گیاهان مقاوم به بیماری از طریق به­نژادی گیاهی سنتی
        1. کاربرد فنون زراعی برای سرکوب بیماری

      (( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))

    1. کاربرد فنون خاموشی ژن
    1. استفاده از مواد غیر سمی افزایش دهنده مقاومت
    1. بهره­وری از عوامل زیستی ناهمساز به میکرواورگانیزم­های مولد بیماری (ایزدپناه و همکاران، ۱۳۸۹ و Strange et al., ۲۰۰۵)

با توجه به ضرورت ارقام گیاهی مقاوم به تنش­های زیستی و غیر زیستی و نارسایی روش­های سنتی به­نژادی گیاهی، به کارگیری روش­های موثر تنها راه برون رفت از این مشکل می­باشد. در سال­های اخیر، با پیشرفت بدست آمده از در زیست شناسی مولکولی و روش­های کشت بافتی گیاهی روش­های جدیدتر و کارآمدتری را در مهندسی ژنتیک، برای چیره­گی بر محدودیت­های به­نژادی گیاهی سنتی فراهم کرده است. بنابراین استفاده از مهندسی ژنتیک برای دستیابی به ارقام مفید می باشد. با بهره گرفتن از فنون انتقال ژن، گیاهان تراریخت با یک ویژگی مشخص می توانند یک ژن از منبع ژنی متفاوت دریافت نمایند به نحوی که سایر ویژگی­های مطلوب گیاه تحت تاثیر قرار نگیرد. بنابراین ­کاربرد سموم شیمیایی هنوز موثرترین روش برای کنترل بیماری­های گیاهی هستند، اما کاربرد بیش از اندازه­ باکتری­کش‌ها و قارچ­کش­ها­ی شیمیایی منجر به شدید شدن و طولانی شدن دوره­ های آلودگی محیط زیست و مقاوم شدن بیمارگرها نسبت به این سموم شده است (Daoubi et al., 2005). اگرچه روش­های اصلاحی یکی از موثرترین راهکارها در تولید گیاهان مقاوم به بیماری­ها بوده اما این روش دارای محدودیت­هایی مانند فقدان پل ژنی دهنده مناسب و شکستن مقاومت می­باشد. از سوی دیگر روش­های بیوتکنولوژی به طور موفقیت­آمیزی در تولید محصولات گیاهی مقاوم علیه بیمارگرها و آفات موثر بوده است، در این روش­ها ژن بیان کننده­ پپتید­های ضدمیکروبی را در گیاهان بیان کرده و باعث مقاومت گیاه به بیماری مورد نظر شده است (Tingquan et al., 2013).
۱-۱- ­ پپتیدهای ضد میکروبی
پپتیدهای ضد میکروبی یکی از اجزای سیستم ذاتی ایمنی محسوب می­ شود که معمولا به عنوان اولین خط دفاعی علیه پاتوژن­ها عمل می­ کنند. چند ویژگی که معمولا در همه پپتید­های ضد عمومیت دارد شامل: توالی کوتاه بین ۳۰ تا۶۰ اسید آمینه آمینه، خاصیت کاتیونی قوی، قابلیت تحمل دما تا ۱۰۰ درجه سانتی گراد به مدت ۱۵ دقیقه می­باشد. پپتیدهای ضد میکروبی بوسیله­ی موجودات مختلف تولید می­شوند که شامل باکتری­ ها حشرات، گیاهان و مهره داران می باشد (Boulanger et al., 2006). پپتید­های ضد میکروبی طیف وسیعی از میکروارگانیسم­ها شامل باکتری­ های گرم مثبت و گرم منفی، قارچ­ها، میکروپلاسماها و ویروس­ها را کنترل می­ کنند. بیش از ۱۵۰۰ پپتید ضد میکروبی در جانوران، گیاهان و میکروارگانیسم­ها شناسایی شده است (Parachin et al., 2012 ; Li et al., 2012).
بیان ژن­های کد کننده­ پپتیدهای ضدمیکروبی با منشا گیاهی در گیاهان تراریخته باعث تغییر کمی در مقاومت گیاه علیه بیمارگرهای گیاهی می شود، زیرا بیمارگر با گیاه در یک مدت طولانی با هم تکامل یافته­اند اما بیان ژن های کد کننده­ یپپتیدهای ضدمیکروبی از منابع دیگر در گیاهان منجر به سطح بالایی از مقاومت در برابر طیف وسیعی از بیماری­ها شده است (Burrowes et al., 2005).
۱-۲- پروتئین لاکتوفرین
پروتئین لاکتوفرین یکی از اعضای خانواده­ی ترانسفرین ها می باشد که دارای خاصیت اتصال شونده­گی به آهن است. لاکتوفرین­ها اغلب آمفی­پاتیک حاوی بار مثبت و مناطق هیدروفیل هستند که به دومین مولکول­های حاوی بار منفی در سطح میکرواورگانیسم متصل می­شوند که این مکانیسم به لاکتوفرین اجازه می­دهد به راحتی با غشا باکتری که شامل مجموعه ­ای از مولکول­های آمفی­پاتیک می­باشد، واکنش دهد، مخصوصا با باکتری­هایی که سطح غشا آن­ها دارای بار منفی می­باشند (Legrand and Mazurier, 2010 ).
۱-۳- هدف
در این پروژه بیمارگرهای باکتریایی و ویروسی به گیاهان ترایخت نسل دوم توتون حاوی ژن لاکتوفرین شتر عربی با هدف ایجاد مقاومت توتون­های تراریخت نسبت به این بیمارگرها مایه­زنی گردید.
فصل دوم
۲- مروری بر پژوهش­های پیشین
۲-۱- بیماری­های گیاهی و مهند سی ژنتیک
با تشخیص القای تومور درگیاهان توسط Agrobacterium tumefaciens به­واسطه­ انتقال T-DNA موجود روی پلاسمید باکتری ایجاد می­ شود، کاربرد از آن برای ایجاد گیاهان تراریخت معمول شده است. اگر چه از تکنیک­های دیگری مانند الکتروپوراسیون[۱] و بیولیستیک[۲] نیز استفاده می­ شود. روش های سنتی به­نژادی گیاهان شامل تلاقی­های مختلف و روش­های درون شیشه ­ای مکمل این روش­ها در ایجاد گیاهان با صفات مطلوب می­باشند. در سال­های اخیر ظهور روش­های مهندسی ژنتیک به عنوان ابزاری جدید در تحقیقات کشاورزی همسو با به­نژادی سنتی در گسترش روش­های جدید برای دستورزی ژنتیکی گیاهان نقش بسیار مهمی ایفا کرده است. یکی از شاخه­ های زیست فناوری گیاهی انتقال ژن­های خاص به سلول­های گیاهی و یا بازایی گیاه از این سلول‌ها با بهره گرفتن از روش­های کشت بافت گیاه می­باشد. بنابراین زیست فناوری این پتانسیل را دارد که با تولید گیاهان با خصوصیات بهبود یافته مکمل روش­ها­ی سنتی به نژادی گیاهان شود. بر خلاف روش­های به نژادی سنتی که در آّن دسته­ای از ژن­ها منتقل می­ شود (Wood and Derek, 2001). در روش­های مبتنی بر زیست فناوری می­توان یک ژن مشخص را از هر موجودی انتخاب و به جاندار دیگر انتقال داد. سوالی که در روش­ها­ی مهندسی ژنتیک مطرح می­ شود این است که چه ژن­های باید منتقل شوند که پاسخ به این سوال بستگی به نوع هدفی که در انتقال ژن دنبال می شود، دارد. در مبارزه با بیماری­ها با بهره گرفتن از مهندسی ژنتیک دسته اول ژن­های کاندیدا برای انتقال ژن­های هستند که ویژگی­های بیماری­زای بیمارگر به عنوان مثال آنزیم­ های تجزیه کننده توکسین­ها را باز داشته یا آن را از بین می­برند یا ژن­هایی که مقاومت گیاه را افزایش می­­دهند. دسته بعدی ژن­هایی هستند که غلظت پپتید­های ضد­میکروبی را افزایش می­ دهند (Strange et al., 2005).
ژن­های جانوری که از آنها می توان برای ایجاد مقاومت در گیاهان استفاده کرد بسیار متنوع هستند که از حشرات، پستانداران و خزندگان قابل جداسازی هستند به عنوان نمونه سکروپین[۳] و دفنسین[۴] حشرات، برنینز[۵] قورباغه، ایندولوسیدین[۶] گاو نمونه­هایی از پروتئین­های ضد میکروبی هستند که ژن آنها قابل انتقال به گیاهان است (Li et al., 2012). از دیگر ژن­های با خواص ضدمیکروبی می توان به لاکتوفرین و لیزوزیم پستانداران اشاره کرد.
۲-۲- توتون “سیستم بیان گیاهی متداول”
توتون با نام علمی Nicotiana tabacum به عنوان یک سیستم بیان گیاهی مدل است که در سطح گسترده، جهت انتقال ژن­های مختلف بکار رفته است و بیشترین استفاده را در بین گونه­ های گیاهی به خود اختصاص داده است. از بهترین دلایل انتخاب آن، می توان به انعطاف­پذیری و آسانی نسبی دستورزی ژنتیکی، ایجاد عملکرد سالانه بیش از ۱۰۰ تن در هکتار و تولید بذر فراوان در گیاه اشاره کرد (Strange et al., ۲۰۰۵).
توتون یک محصول خودگرده افشان است و خویشاوندان زراعی یا وحشی کمی دارد. بنابراین امکان فرار ژن در این حالت بسیار کم است و بنابراین بر خلاف بسیاری از سیستم­های گیاهی، توتون مناسب­ترین شرایط را از نظر مسایل ایمنی زیستی و اخلاق زیستی دار است و کمترین احتمال آلودگی زنجیره­های گیاهی و جانوری را داراست )قاسم پور و همکاران، ۱۳۸۶).
۲-۳- معرفی پپتید های ضد میکروبی
پپتیدهای ضد میکروبی بوسیله­ی موجودات مختلف تولید می­شوند که شامل باکتری­ ها حشرات، گیاهان و مهره داران می­باشند (Boulanger et al., 2006). همانطور که قبلا بحث شد چند روش برای گسترش تولید [۷]AMPدر سیستم­های میکروبی وجود دارد که از جمله­ آن به کنترل رونویسی و تولید پروتئین نوترکیب می­باشد، اما سیستم بیانی گیاهان به عنوان یک جایگزین مناسب برای تولید پپتیدها بدون نیاز به کنترل رونویسی، توانایی بیان در سطح بالا و فرایندهای پس از ترجمه گیاه می باشد مورد توجه قرار گرفته­اند (Haung et al., 2009). این پپتیدهای دارای شش سیستئن در توالی خود می­باشند که تشکیل سه باند دی­سولفیدی می­ دهند (Craik, 2011). این کمپلکس ساختار سه تایی از طریق پیش­سازش جداشده، خارج می­ شود و تا می­خورد که نتیجه­ آن تولید پپتید بالغ می­باشد. و پیشنهاد شده که پپتید اولیه به همراه یک آنزیم واکوئلی به نام آسپارزینیل اندوپپتیداز[۸] با دو فعالیت اندوپپتیدازی و تشکیل ساختار صحیح پروتئین این فرایند را انجام می­دهد (Craik et al., 1999).
پپتیدهای ضدمیکروبی با توجه به منشاشان به چهار گروه تقسیم بندی می­شوند:۱- حشرات ۲- دیگر حیوانات ۳- شیمیایی ۴- از طریق میکروارگانیسم­های مهندسی شده تولید می­شوند. امروزه بیش از ۱۵۰۰ پپتید ضدمیکروبی از منشاهای متفاوت گزارش شده است (Varadhachary and Gauri, 2010).
۲-۳-۱- پپتید های ضد میکروبی با منشا حشرات
این نوع پپتیدها هم القایی هستند و هم به صورت همیشه بیان می­باشند. امروزه بیش از ۲۰۰ پپتید در حشرات شناسایی شده این پپتید­ها به پنج گروه بر اساس توالی اسید آمینه و فعالیت آنتی باکتریایی تقسیم بندی می شوند. که عبارتند از سکروپین­ها، دفنسین حشرات، پپتید غنی از پرولین، پپتیدهای غنی از گلیسین و لیزوزیم­ها(Li et al., 2012) .
۲-۳-۲- پپتیدهای ضد میکروبی شناسایی شده در دیگر حیوانات
این پپتیدها توالی متنوع، ساختار و بافت هدف خاصی را نشان می­ دهند. بیان این پپتیدها در اکثر بافت­ها و انواع مختلفی از سلول­ها و سطح گسترده­ای از انواع گونه­ های مختلف شامل پستانداران، دوزیستان و ماهی­ها بیان می شوند. در بیشتر مهره­داران با یک لایه­ی دایره­ای خنثی حفظ می­ شود (Li et al., ۲۰۱۲).
۲-۳-۳ - پپتید های ضد میکروبی حاصل از سنتز مصنوعی
سنتز مصنوعی با بهره گرفتن از روش فاز جامد انجام می­گیرد که در این روش ابتدا اسید آمینه­ای که انتهای آن دارای انتهای آمینی می­باشد، محافظت شده به فاز جامد متصل می­ شود سپس مولکولی که به قسمت انتهای آمینی چسبیده برداشته شده و اسید آمینه­ی دیگر اضافه شده و به همین ترتیب ادامه داده تا پپتید مورد نظر ساخته شود. ازجمله مشکلات سر راه در سنتز پپتید هزینه­ زیاد، وجود باندهای دی­سولفیدی و تغییرات پس از ترجمه می باشد (Wang et al., 2012).
۲-۳-۴- پپتیدهای ضد میکروبی حاصل از میکروارگانیسم­های مهندسی شده
پیشرفت در تکنولوژی DNAی نوترکیب فرصتی را برای تولید AMPها در مقیاس وسیع فراهم کرده است. این تکنولوژی قادر است ژن بیگانه را در ناقل های مخصوص جاسازی و در پروکاریوت­ها و سلول­های یوکاریوت میزبان بیان کند. با توجه به اینکه موثرترین روش برای صرفه­جویی در زمان و کاهش هزینه می­باشد و علاوه بر این تولید پپتید با بهره گرفتن از تکنیک زیست مولکولی می ­تواند در بخش­های مختلف صنعتی به کاررود (Rao et al., 2005). با توجه به اندازه­ پپتید، جایگاه و ترشح داخل سلولی پپتید، نحوه­ تاخورده­گی و الگوهای قنددار شدن پپتیدها، میزبان‌های متفاوتی وجود دارد. باکتری­ ها و مخمرها ۹۶ درصد میزبان­ها را در تولید AMPها به خود اختصاص دادند و درحالی که گیاهان نقش کمرنگ تری در تولید AMP ها دارند (Parachin et al., 2012).
۲-۳-۴-۱- باکتری ها
باکتری Esheria coliیکی از پر کاربردترین میکرو ارگانیسم­­ها برای تولید پپتیدهای ضد میکروبی می­باشند که به دلیل رشد سریع، دسترسی به ناقل های بیانی تجاری، وجود دانش وسیع در حیطه­ی ژنتیک، بیوشیمی و فیزیولوژی را به خود اختصاص داده است. بعد از E.coli باکتری Bacillus subtillusبیشترین کاربرد برای بیان AMP را به خود اختصاص داده است (Ingham and Moore, 2007) که از جمله­ آن می توان سکروپین AD نام برد (Feng et al., 2012). تولید AMP در باکتری­ ها با چند چالش روبرو می­باشد، از جمله­­ می توان، جلوگیری از فعالیت طبیعی AMP به دلیل سمی بودن برای باکتری و ناپایداری AMP به علت خواص شیمیایی و اندازه­ آن نام برد. بنابراین برای بدست آوردن بیان موفقAMP از یک پروتئین حامل که خاصیت آنیونی پپتید را خنثی کند می­توان از پروتئین حامل استفاده کرد، علاوه بر این، پروتئین حامل حلالیت AMP را تسهیل کرده است (Li et al., 2012).
۲-۳-۴-۲- مخمرها
مخمرهایی مانند Saccharomyces cerevisiae و Pichia pastoris از جمله میزبان­های مناسب برای تولید AMPها می باشند (Cregg et al., 2009). مخمرها مزایایی نسبت به پروکاریوت­ها دارند که عبارتند از: دارای تغییرات پس از ترجمه هستند، هزینه­ کمتر و رشد سریعتر در مقایسه با کشت سلول­های پستانداران دارند که نتیجه­ آن تولید پروتئین بیشتر و مناسب­تر می­باشد و در نهایت اینکه مخمر ها قادرند AMPمورد نظر را به بیرون ترشح ­کنند که خالص­سازی و جداسازی را آسان می­ کند (Atiqur et al., 2010). برای مثال تولید AMPی Shrimp paenedin در S.cerevisiae انجام شد ولی سطح تولیدی گزارش نشد در حالی که درP .pastoris مقدار mg/l-1180 تولید شد. دلیل آن این است که P. pastoris دارای مقاومت نسبت به الکل می باشد و محیط اطراف خود را تخمیری نمی­کند بنایراین می تواند سطح بالایی از پپتید را تولید کند (Cereghino et al., 2002).
۲-۳-۴-۳- گیاهان
تغییرات ژنتیکی گیاهان پیشرفت بزرگی را در بهبود و اصلاح محصولات و کیفیت مواد غذایی گیاهان به ارمغان آورده است، از جمله گیاهانی مانند سویا، ذرت، کتان و برنج می توان اشاره کرد و این گیاهان به مدت طولانی برای بیان پپتید استفاده می­شوند (Desai et al., 2010). در واقع تغییرات ژنتیکی گیاهان برای بیان پروتئین بیگانه و پپتید به طور عمده برای اصلاح محصولات انجام شده است، اما هیچ تلاش موثری در تعیین مقدار کمی AMPی نوترکیب انجام نشده است. در حال حاضر با توجه به فعالیت طبیعی AMPها از بیان آن­ها در سیستم­های میکروبی ممانعت می­ شود (Delaunios et al., 2009).
همانطور که قبلا توضیح داده شد هدف از بیانAMPها در گیاهان بیشتر برای مقاوم کردن آنها به بیماری­های ویروسی، باکتریایی و قارچی بوده است. بیان پروتئین دفنسین Rs-AFP2 در تربچه، گوجه و توتون باعث مقاومت در برابر بیماری قارچی Alternaria longipes شد (Terras et al., 1995).
پپتید ضد قارچی آلفا آلفا[۹] بیماری پژمرده­گی ورتیسلیومی سیب زمینی را نسبتا کنترل کرده (Gao et al., 2010). بیان ژن لاکتوفرین در کالوس‌های تراریخت و استخراج پروتئین کل خاصیت ضد باکتریایی علیه ۴ باکتری را نشان داد و علاوه بر این که منجر به مقاومت گیاه علیه باکتری می­ شود. لاکتوفرین آهن را از دسترس باکتری دور کرده و باعث کم شدن جمعیت باکتری شده است (Mitra et al.,1994). بیان ژن لاکتوفرین در گیاه توتون باعث مقاومت نسبی علیه باکتریR. solanacerum در مقایسه با تیپ وحشی شد که احتمالا دلیل آن وجود لاین های مختلف ژنتیکی، وجود کپی­های متفاوت در گیاهان تراریخت و جایگاه قطعه­ی مورد نظر در گیاه است (Zhang et al., 1998). ژن سکروپین در گیاه توتون علیه باکتری Pseudomonas syringae pv. Tabaci بیان شد و گیاه تراریخت فقط در رقت­های۱۰۵ و ۱۰۶ این باکتری نکروز نشان داد درحالی که در رقت­های۱۰۳ و ۱۰۴ هیچ­گونه علایم نکروزی مشاهده نشد (Haung et al., 2009). پپتید ضد میکروبی می ­تواند به عنوان عامل درمانی علیه باکتری­ ها و ویروس­ها استفاده شود. بیان ژن اسپروتگرین[۱۰] در کلروپلاست گیاه توتون باعث مقاومت علیه باکتری Erwinia carotovorra و ویروس موزاییک توتون شد (Lee et al., 2011). پپتید ضد میکروبی پپتیبول[۱۱] با خاصیت ضد ویروسی علیه ویروس موزاییک توتون استفاده شد و باعث تحریک آنزیم­هایی مانند پروکسیداز[۱۲]، آمونیالیاز[۱۳] و فنیل آلانین[۱۴] و همچنین بیان ژن­های درگیر در مسیر فوق حساسیت نقش دارند، شد (Yan et al., 2012). تاناتین[۱۵] نوعی پپتید ضد میکروبی که فعالیت ضدرذمیکروبی وسیعی علیه باکتری، قارچی و ویروسی نشان داده است بیان ژن این پپتید در گیاه آرابیدوپسیس باعث مقاومت علیه قارچ Botrytis cinerea و Powdery Mildew و باکتری P. syringae شد (Yan et al., 2010). امروزه بیان ژن پپتیدهای ضد میکروبی غیر گیاهی در گیاهان تراریخت دارای پتانسیل بالایی برای مبازه با بیماری­های باکتریایی هستند.
۲-۴- ۱- معرفی لاکتوفرین
لاکتوفرین یک گلیکوپروتئین متصل شونده به آهن و از خانواده ترانسفرین است، که اولین بار از شیر گاو جداسازی شد (Sorensen and Sorensen, 1939).
۲-۴-۲- بررسی ساختار ژنی لاکتوفرین
سه ایزوفرم از لاکتوفرین شناسایی شده است که دو ایزوفرم فعالیت نوکلئازی دارند و یک ایزوفرم بدون فعالیت نوکلئازی می­باشد. ژن لاکتوفرین ۲۳ تا ۲۵ کیلوباز بوده و شامل ۱۷ اگزون است که در پستانداران مختلف تفاوت های جزئی دارند. توالی یابی ژن لاکتوفرین شتر نیز انجام شده و توالی mRNA آن در Genbank با شماره‌های AF165879 و AJ131674 در دسترس است. ژن لاکتوفرین در گونه‌های نزدیک بسیار حفاظت بوده و طول ORF[16] آن در موجودات مختلف بین ۱۹۰۰ تا ۲۶۰۰ جفت باز است و طول ORF لاکتوفرین شتر ۲۱۲۴ جفت باز است (Levay et al., 1995).

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...